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Abstract. The single-particle inclusive differential cross-section for a reaction a + b → c + X is written
as the imaginary part of a correlation function in a forward scattering amplitude for a + b → a + b in a
modified effective theory. In this modified theory the interaction Hamiltonian H̃I equals HI in the original
theory up to a certain time. Then there is a sign change and H̃I becomes nonlocal. This is worked out in
detail for scalar field models and for QED plus the abelian gluon model. A suitable path integral for direct
calculations of inclusive cross sections is presented.

1 Introduction

In this article we consider inclusive cross sections, i.e. re-
actions of the type

a(p1) + b(p2) −→ c(p3) +X, (1.1)

where a, b, c are particles and X stands for the unobserved
remaining reaction products. We will present a general
method which allows us to write the inclusive differential
cross section p0

3dσ(a+ b→ c+X)/d3p3 as imaginary part
of either a current-current or a field-field correlation func-
tion in a forward scattering amplitude a+ b→ a+ b in a
modified theory. Let

H = H0 +HI (1.2)

be the Hamiltonian of the original theory, with H0 and
HI the free and interaction parts, respectively. Then the
modified theory is described by

H̃ = H0 + H̃I , (1.3)

where H̃I , obtained fromHI in a well defined procedure, is
discontinuous in time and nonlocal in space. The modified
theory is constructed in such a way that both its incom-
ing and outgoing states are equal to the incoming states
of the original theory. Thus the S-matrix of the modified
theory equals the unit operator. Here and in the follow-
ing we always work in the Heisenberg picture of quantum
mechanics.

Our article is organised as follows. In Sect. 2 we re-
call the basic relations for single inclusive cross sections.
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In Sect. 3 we present our general formalism for the modi-
fied effective theory in the case of scalar fields. Quantum
electrodynamics with massive photons and the theory of
quarks interacting with abelian gluons are considered in
Sect. 4. We discuss some properties of the modified Hamil-
ton operator and derive a path integral representation
for inclusive cross sections in the abelian gluon model.
These techniques are then applied to the cross section
e+ + e− → q + X as a specific example. We compare
our techniques with the Schwinger-Keldysh formalism [1],
described e.g. in [2], and with Mueller’s treatment [3] of
inclusive cross sections using the generalised optical the-
orem for 3 → 3 scattering in Sect. 5 which contains also
our conclusions.

2 Single inclusive cross sections

In this section we recall some basic relations for inclusive
cross sections. Our notation follows [4,5]. Let us consider
a single-particle inclusive reaction, i.e

a(p1) + b(p2)→ c(p3) +X(pX). (2.1)

To take a simple case, let a, b, c be spinless particles with
masses ma,mb,mc. The c.m. energy squared is s = (p1 +
p2)2. We assume c(p3) to differ in type and/or momentum
from a(p1) and b(p2). We use the covariant normalisation
for our state vectors

〈 a(p′
1) | a(p1) 〉 = (2π)3 · 2p0

1 · δ(3)(p1
′ − p1) (2.2)

and similarly for b, c. The S-matrix element for the reac-
tion (2.1) is given as

Sfi = 〈 c(p3), X(pX), out | a(p1), b(p2), in 〉
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= iZ−1/2
c

∫
d4x eixp3

×〈 X(pX), out | jc(x) | a(p1), b(p2), in 〉. (2.3)

Here we have applied the reduction formula for particle
c in the final state. Let φc(x) be a suitable interpolating
field for c and Zc the corresponding wave function renor-
malisation constant. The current jc(x) is defined as

jc(x) =
(
✷x +m2

c

)
φc(x). (2.4)

The T -matrix element is obtained from the S-matrix ele-
ment via

Sfi = δfi + i(2π)4δ(4)(p1 + p2 − p3 − pX)Tfi,
Tfi = Z−1/2

c 〈 X(pX), out | jc(0) | a(p1), b(p2), in 〉. (2.5)
The single-particle inclusive cross section finc(p3) is de-
fined by

finc(p3) := p0
3
d3σ

d3p3
(a+ b→ c+X)

=
1

4(2π)3w(s,m2
a,m

2
b)

∑
X

(2π)4δ(4)(p1 + p2 − p3 − pX)|Tfi|2, (2.6)
w(x, y, z) = [x2 + y2 + z2 − 2xy − 2xz − 2yz]1/2. (2.7)

In the usual way the sum over all states |X, out 〉 in (2.6)
can be carried out using completeness and translational
invariance

finc(p3) =
1

4(2π)3w(s,m2
a,m

2
b)

Z−1
c

∫
d4x eip3x

×〈a(p1), b(p2), in |j†
c(0)

jc(x)|a(p1), b(p2), in 〉 (2.8)

=
1

2(2π)3w(s,m2
a,m

2
b)

Im C(p1, p2, p3), (2.9)

C(p1, p2, p3) = i

∫
d4x eip3xM(x), (2.10)

M(x) = Z−1
c 〈 a(p1), b(p2), in | j†

c(0)
jc(x) | a(p1), b(p2), in 〉θ(−x0). (2.11)

Here θ(z) is the usual step function.
Alternatively we can write

M(x) = Z−1
c

(
✷y +m2

c

) (
✷z +m2

c

)
θ(−x0)

〈a(p1), b(p2), in | φ†
c(y) (2.12)

φc(x+ z)|a(p1), b(p2), in 〉 |y→0−, z→0− .

Here the limit y → 0−, z → 0− is to be understood as
follows: We first require y0 < 0 and z0 < 0 and perform
the differentiations with respect to y and z. Afterwards
we take the limit y → 0 and z → 0.

The amplitude C(p1, p2, p3) will play a central role in
the following and we will be able to write it as a current-
current, respectively a field-field correlation function in a
forward scattering amplitude, but in a certain modified
effective theory.

3 Modified effective theory for scalar fields

Let us assume that the basic dynamical variables of the
original theory are the operators for unrenormalised scalar
fields φi(x) and their conjugate canonical momenta Πi(x)
(i = 1, ..., N). For simplicity we assume that Πi(x) =
φ̇i(x) holds. We denote φi(x), Πi(x) collectively as Φ(x).
Let H be the Hamiltonian of the system which we split
into a free part H0 and an interaction part HI which may
depend explicitly on the time t, but should not involve
time derivatives of Πi(x)

H(t, Φ(x, t)) = H0(Φ(x, t)) +HI(t, Φ(x, t)). (3.1)

Besides the interacting fields and momenta Φ free fields
and momenta Φ(0) are considered with the correspond-
ing Hamiltonian H0. Here the mass parameters in H0 are
taken to be the ones of the asymptotic particles.

We assume now as usual (cf. e.g. [6,7]) that there exist1
unitary operators U(t) that realize the time-dependent
canonical transformations relating Φ to Φ(0)

Φ(x, t) = U−1(t)Φ(0)(x, t)U(t). (3.2)

Taking as boundary condition

Φ(x, 0) = Φ(0)(x, 0) (3.3)

we get

∂tU(t) = −iHI(t, Φ(0)(x, t))U(t),
U(0) = 11, (3.4)

U(t) =
∞∑
n=0

(−i)n
∫ t

0
dt1

∫ t1

0
dt2

...

∫ tn−1

0
dtnHI(t1)...HI(tn),

HI(tj) ≡ HI(tj , Φ(0)(x, tj)). (3.5)

We define furthermore

U(t2, t1) = U(t2)U−1(t1). (3.6)

For t2 ≥ t1 we have

U(t2, t1) = T exp
[
−i
∫ t2

t1

dt′HI(t′, Φ(0)(x, t′))
]
, (3.7)

where T means time-ordering.
Let us recall the LSZ formalism [9,6,7]. Assuming for

simplicity the particles a and b to carry the quantum num-
bers of some fundamental hermitian scalar fields φa, φb, we
define operators

A(p1, x
0) = iZ−1/2

a

∫
d3x eip1x∂x0

↔
φa(x)

1 Of course this is only true in the regularised theory, i.e. for
finite ultraviolet cutoff
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= iZ−1/2
a

∫
d3x eip1x(Πa(x)− ip0

1φa(x)),

B(p2, x
0) = iZ

−1/2
b

∫
d3x eip2x∂x0

↔
φb(x)

= iZ
−1/2
b

∫
d3x eip2x(Πb(x)− ip0

2φb(x)), (3.8)

where Za,b are the wave function renormalisation con-
stants. The LSZ formalism has as basic assumption that
for t → ±∞ the (hermitian conjugates of the) operators
of (3.8) converge in the weak sense to the annihilation
(creation) operators of out and in-states, respectively, for
instance

lim
t1,2→±∞A†(p1, t1)B†(p2, t2) | 0 〉 = | a(p1), b(p2)outin 〉.

(3.9)

Now we return to the single inclusive cross section
(2.8), where we have to calculate the matrix element (2.11)

M(x) = Z−1
c 〈 a(p1), b(p2), in | j†

c(0)
jc(x) | a(p1), b(p2), in 〉θ(−x0)

= Z−1
c lim

ti,t′i→∞
〈 0 | B(p2,−t′2)A(p1,−t′1)j†

c(0)

jc(x)A†(p1,−t1)B†(p2,−t2)| 0 〉θ(−x0). (3.10)

We assume the current jc(x) to be expressible in terms of
the fields and their conjugate momenta but not involving
their time derivatives. Then we have

U(t)jc(t, Φ(x, t))U−1(t) = jc(t, Φ(0)(x, t))

=: j(0)
c (x). (3.11)

Furthermore we have from (3.2) and (3.8)

U(t)A(p1, t;Φ(x, t))U−1(t) = A(p1, t;Φ(0)(x, t))

=: A(0)(t) (3.12)

and the same for B(p2, t). We note that the Φ(0) satisfy
the free field equations. In the case of a free scalar field
with mass m they read

φ̇(0)(x, t) = Π(0)(x, t),

Π̇(0)(x, t) = (∆x −m2)φ(0)(x, t). (3.13)

This implies

Ȧ(0)(t) = 0, Ḃ(0)(t) = 0. (3.14)

NowM(x) (3.10) may be written as

M(x)= lim
ti,t′i→∞

Z−1
c 〈 0 | U−1(−T ′)U(−T ′,−t′2)B(0)(−t′2)

×U(−t′2,−t′1)A(0)(−t′1)U(−t′1, 0)j†(0)
c (0)

×U(0, x0)j(0)
c (x)U(x0,−t1)A†(0)(−t1)

×U(−t1,−t2)B†(0)(−t2)U(−t2,−T )
×U(−T ) | 0 〉θ(−x0). (3.15)

Here we have introduced further times T, T ′ and we as-
sume without loss of generality

T > t2 > t1,

T ′ > t′2 > t′1. (3.16)

With the usual assumption that the interaction is switched
off adiabatically for t → ±∞ we get from the adiabatic
theorem

lim
T→∞

U(−T ) | 0 〉 = eiϕ− | 0 ), (3.17)

where |0) is the vacuum state of the free theory. Inserting
everything in (3.15), we get

M(x) = lim
ti,t′i→∞

lim
T,T ′→∞

Z−1
c (0 | U(−T ′,−t′2)B(0)(−t′2)

×U(−t′2,−t′1)A(0)(−t′1)U(−t′1, 0)j†(0)
c (0)

×U(0, x0)j(0)
c (x)U(x0,−t1)A†(0)(−t1)

×U(−t1,−t2)B†(0)(−t2)U(−t2,−T )| 0 )θ(−x0)
×[( 0 | U(−T ′)U−1(−T ) | 0 )]−1. (3.18)

Following the time-dependence inM(x) from the right to
the left, we start at time −T → −∞ and pass through
operators of increasing time arguments until time 0. Then
the time sequence changes and we go back in time to time
−T ′ → −∞. In a usual matrix element the time arguments
should increase instead.

We will now show that we can write the matrix element
M(x) (3.18) in the usual form, with time increasing from
right to left, if we pass to operators Ũ of the form (3.5)
but with a modified interaction Hamiltonian H̃I . As the
time-sequence inM(x) is correct up to t = 0, we request

Ũ(t) = θ(−t)U(+t) + θ(t)U(−t). (3.19)

This gives with (3.4)

∂tŨ(t) = −iH̃I(t)Ũ(t), (3.20)

H̃I(t) = θ(−t)HI(t, Φ(0)(x, t))

−θ(t)HI(−t, Φ(0)(x,−t)). (3.21)

For t > 0 our modified interaction Hamiltonian H̃I(t) de-
pends on the free fields and momenta at time (−t). But we
know how to express the free fields and momenta at time
(−t) by their values at time t using the free field equations
of motion. For φ(0), Π(0) satisfying (3.13) we get

φ(0)(x, x0) =
∫
y0=const.

d3y ∆(x− y;m2)∂y0
↔

φ(0)(y)

=
∫
y0=const.

d3y
{
∆(x− y;m2)Π(0)(y)

+∆̇(x− y;m2)φ(0)(y)
}
,

Π(0)(x, x0) = φ̇(0)(x, x0) (3.22)
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with the usual commutator function for scalar fields of
mass m

∆(z;m2) = i

∫
dRk(e−ikz − eikz),

dRk =
d4k

(2π)3
θ(k0)δ(k2 −m2). (3.23)

Setting y0 = t and x0 = −t in (3.22) we get expressions for
φ(0)(x,−t) and Π(0)(x,−t) as linear functions of φ(0)(y, t)
and Π(0)(y, t). Thus, we can consider H̃I(t) (3.21) as a
nonlocal functional of the dynamical variables Φ(0)(x, t)
at the same time t also for t > 0

H̃I(t) = H̃I(t, Φ(0)(x, t)). (3.24)

Using in addition (3.14) we can rewrite M(x) (3.18) as
follows

M(x) = lim
ti,t′i→∞

lim
T,T ′→∞

Z−1
c (0 | Ũ(T ′, t′2)B

(0)(t′2)

×Ũ(t′2, t′1)A(0)(t′1)Ũ(t
′
1, 0)j

†(0)
c (0)Ũ(0, x0)j(0)

c (x)

×Ũ(x0,−t1)A†(0)(−t1)Ũ(−t1,−t2)B†(0)(−t2)
×Ũ(−t2,−T ) | 0)θ(−x0)

×[(0 | Ũ(T ′,−T ) | 0)]−1, (3.25)

Ũ(t′, t) = Ũ(t′)Ũ−1(t)

= T exp

[
−i
∫ t′

t

dt′′H̃I(t′′, φ(0)(x, t′′))

]

(t′ ≥ t). (3.26)

In the limit T, T ′ →∞ we get from (3.25)

M(x) = lim
tit′i→∞

Z−1
c ( 0 | Texp

[
−i
∫ ∞

−∞
dt′H̃I(t′)

]

×B(0)(t′2)A
(0)(t′1)j

†(0)
c (0)j(0)

c (x)A†(0)(−t1)
×B†(0)(−t2) | 0 )θ(−x0)

×
[
( 0 | Texp

[
−i
∫ ∞

−∞
dt′H̃I(t′)

]
| 0 )

]−1

.(3.27)

Clearly, we can consider (3.27) as matrix element of the
standard type but in the modified theory governed by the
total Hamiltonian

H̃(t, Φ̃(x, t)) = H0(Φ̃(x, t)) + H̃I(t, Φ̃(x, t)), (3.28)

Φ̃(x, t) = Ũ−1(t)Φ(0)(x, t)Ũ(t), (3.29)

M(x) = Z−1
c 〈〈 a(p1), b(p2), out | j†

c(0)
jc(x) | a(p1), b(p2), in 〉〉θ(−x0). (3.30)

Here we denote by 〈〈 〉〉 matrix elements in the modified
theory. Using (2.12) we can also writeM as

M(x) = Z−1
c

(
✷y +m2

c

) (
✷z +m2

c

)
〈〈 a(p1), b(p2), out | φ†

c(y)φc(x+ z)
| a(p1), b(p2), in 〉〉θ(−x0)|y→0−, z→0− . (3.31)

The S-matrix of the modified theory equals unity, due
to the fact that the incoming and outgoing states are now
identical

S̃ = 11. (3.32)

In (3.28)–(3.31) we have a main result of our paper.
The matrix element M is written in the standard form
with an in-state to the right and an out-state to the left.
The prize we have to pay is that we have to use the mod-
ified theory where the Hamiltonian H̃(t) has a sudden
variation at t = 0 and is nonlocal for t > 0. On the other
hand we can use (3.28)–(3.31) as starting point to write
down a path integral representation for M in the stan-
dard way. Below in Sect. 4 we will do this for QED and
the abelian gluon model as an example.

4 Inclusive production in QED
and an abelian gluon model

4.1 QED and the abelian gluon model

In this section inclusive reactions are considered in QED
coupled to an abelian gluon model. An example for such
a reaction is

e+(p1) + e−(p2) → q(p3) +X. (4.1)

Starting point is the Lagrangian describing the interac-
tion of electrons of mass m and charge −e with a massive
photon of mass λ - to avoid any infrared divergences - and
of two quark flavours of equal mass M and electric charge
eQq with the photon and a massive abelian gluon of mass
µ. As Lagrangian we choose

L = − 1
4
GµνG

µν − 1
2η0

(∂µGµ)2 +
1
2
µ2

0GµG
µ

− 1
4
FµνF

µν − 1
2ξ0

(∂µAµ)2 +
1
2
λ2

0AµA
µ

+ ψ̄

(
i

2

↔
∂� −m0 + e0A�

)
ψ

+q̄

(
i

2

↔
∂� −M0 − e0QqA� −g0τ3G�

)
q, (4.2)

where Gµ denotes the abelian gluon field and Gµν =
∂µGν − ∂νGµ its field strength tensor, Aµ the photon
field and Fµν = ∂µAν − ∂νAµ its field strength tensor,
ψ the electron field and q the quark field. For the vector
boson part of L we have chosen here a form advocated
by Stueckelberg (cf. e.g. [7]), where terms −1/2η0(∂µGµ)2
and −1/2ξ0(∂µAµ)2 have been added for the abelian gluon
and the photon field. We have a quark field with two
flavours and τ3 is the usual Pauli matrix. All quantities
in (4.2) are the unrenormalised ones. The corresponding
renormalised quantities are denoted either without any
subscript in the case of constants or with the subscript R
in the case of fields.

The Lagrangian (4.2) has two discrete symmetries of
the charge conjugation type, CA and CG, which guarantee
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that no further coupling terms need to be added in (4.2)
and that photons and the abelian gluons do not mix. All
this is explained in Appendix A, where we also discuss the
renormalisation procedure in our model.

The canonical momenta of the vector fields of the the-
ory are listed in (B.2) of Appendix B. For finite ξ0 and η0
the relation (B.2) can be solved for ∂0Aµ and ∂0Gµ and
the canonical formalism can be applied.

The Hamiltonian corresponding to (4.2) can be ob-
tained as usual by a Legendre transformation

H = H0(y0) +HI(y0),

H0(y0) =
∫

d3yH0(y),

HI(y0) =
∫

d3yHI(y), (4.3)

where we choose the free H0(y) and the interaction part
HI(y) of the Hamiltonian density as follows

H0(y) = −η

2
ΠG0Π

0
G −

1
2
ΠGiΠ

i
G − ∂iG

iΠ0
G +Πi

G∂iG
0

+
1
4
GijG

ij − 1
2
µ2GµG

µ − ξ

2
ΠA0Π

0
A

−1
2
ΠAiΠ

i
A − ∂iA

iΠ0
A +Πi∂iA

0 +
1
4
AijA

ij

−1
2
λ2AµA

µ − ψ̄

(
i

2
γi

↔
∂i −m

)
ψ

−q̄
(
i

2
γi

↔
∂i −M

)
q. (4.4)

HI(y) = +
1
2
δµ2GµG

µ +
1
2
δηΠG0Π

0
G

+
1
2
δλ2AµA

µ +
1
2
δξΠA0Π

0
A − δmψ̄ψ − δMq̄q

−e0ψ̄A� ψ + q̄ (e0QqA� +g0τ3G� ) q, (4.5)

with

δµ2 = µ2 − µ2
0,

δη = η − η0,

δλ2 = λ2 − λ2
0,

δξ = ξ − ξ0,

δm = m−m0,

δM = M −M0. (4.6)

Only the interaction term has to be altered in order to
construct the Hamilton operator for the modified theory
according to the rules specified in Sect. 3

H̃(y0) = H0(y0) + H̃I(y0),

H̃I(y0) =
∫

d3y [θ(−y0)HI(y)− θ(y0)H̃I(ỹ)]
with ỹ = (−y0,y). (4.7)

In H̃I(ỹ) the fields at time −y0 have to be substituted by
the fields at time y0 via the time shift relations analogous

to (3.22). For the vector fields and the fermion fields these
are given by (B.6), (B.7) and (B.13) in Appendix B. Two
points should be stressed concerning this modified Hamil-
ton operator: First, due to the jump in the interaction, the
effective theory has no time translation invariance, so that
no longer energy conservation holds at every vertex. Sec-
ond, the effective interaction contains derivatives. Thus,
if we use perturbation theory for the evaluation of ampli-
tudes in the effective theory, we have to be careful about
contact terms in time ordered products, especially for the
vector fields (for a general discussion of such contact terms
see [7,8]).

4.2 Inclusive quark production in e+e−-annihilation

We want to calculate the single-quark-inclusive cross sec-
tion of reaction (4.1). Performing all the steps as described
for scalar fields in Sect. 3 we can write this inclusive cross
section as imaginary part of an amplitude C (cf. (2.8, 2.10,
2.12)). For unpolarised e− and e+ in the initial state and
summation over spin and flavour of the final state quark
this reads

finc(p3) =
1

2(2π)3w(s,m2,m2)
Im C(p1, p2, p3), (4.8)

C(p1, p2, p3) = i

∫
d4x eip3xM(x), (4.9)

M(x) = −Z−1
q

∑
sq

ū(p3)(i
−→
∂� z −M)

∑
se+ ,se−

′

〈e+(p1), e−(p2), in| TqA(x+ z)
q̄A(y) | e+(p1), e−(p2), in〉θ(−x0)

(−i←−∂� y −M)u(p3)|y→0−, z→0− . (4.10)

The transition to the effective theory gives

M(x) = −Z−1
q

∑
sq

ū(p3)(i
−→
∂� z −M)

∑
se+ ,se−

′〈〈 e+(p1), e−(p2)|

TqA(x+ z)q̄A(y) | e+(p1), e−(p2)〉〉θ(−x0)

(−i←−∂� y −M)u(p3)|y→0−, z→0− . (4.11)

Here
∑′ means the average over the spin states, A is the

quark flavour index over which we sum. In (4.10) and
(4.11) we have for convenience inserted a T-product sym-
bol which puts q and q̄ into the order required for x0 < 0
in the limit y → 0−.

In order to calculateM(x) we expand it in powers of
the electromagnetic coupling constant e. The leading term
in the connected part ofM is of order e4, corresponding
to the diagrams of Fig. 1 which can be classified as e+e−-
annihilation (a) and e+e−-scattering (b) ones.

Using the LSZ reduction formalism we get for the con-
nected part of the annihilation matrix elementMa

∑
se+ ,se−

′〈〈e+(p1), e−(p2)|TqA(x+ z)q̄A(y)|e+(p1), e−(p2)〉〉
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Fig. 1a,b. Annihilation diagrams a and scattering diagrams
b for the amplitude M(x) in order e4. In the middle blob
arbitrary gluonic interactions are allowed. All lines and vertices
are in the effective theory. Time runs from right to left

= −e2lµν〈〈0| T
∫

d4x3[θ(−x0
3)Aµ(x3)ei(p1+p2)x3

−θ(x0
3)Aµ(x̃3)ei(p1+p2)x̃3 ]qA(x+ z)

q̄A(y)
∫

d4x4[θ(−x0
4)Aν(x4)e−i(p1+p2)x4

−θ(x0
4)Aν(x̃4)e−i(p1+p2)x̃4 ] |0〉〉, (4.12)

where we have written the matrix element with the help
of the lepton tensor

lµν =
∑

se+ ,se−

′ū(p2)γµv(p1)v̄(p1)γνu(p2)

= pµ1p
ν
2 + pν1p

µ
2 − gµν(p1p2 +m2). (4.13)

Expanding further we get to lowest order in Qqe0∑
se+ ,se−

′〈〈e+(p1), e−(p2)|TqA(x+ z)q̄A(y)|e+(p1), e−(p2)〉〉

=
1
2
e4Q2

ql
µν〈〈0| T

∫
d4x3[θ(−x0

3)Aµ(x3)ei(p1+p2)x3

−θ(x0
3)Aµ(x̃3)ei(p1+p2)x̃3 ]∫
d4x1[θ(−x0

1)q̄(x1)A� (x1)q(x1)

−θ(x0
1)q̄(x̃1)A� (x̃1)q(x̃1)]

qA(x+ z)q̄A(y)

×
∫

d4x2[θ(−x0
2)q̄(x2)A� (x2)q(x2)

−θ(x0
2)q̄(x̃2)A� (x̃2)q(x̃2)]∫

d4x4[θ(−x0
4)Aν(x4)e−i(p1+p2)x4

−θ(x0
4)Aν(x̃4)e−i(p1+p2)x̃4 ] |0〉〉

= −e4Q2
ql
µν 1

s− λ2 − iε

1
s− λ2 + iε

〈〈0| T
∫
d4x1[θ(−x0

1)e
i(p1+p2)x1 q̄(x1)γµq(x1)

−θ(x0
1)e

i(p1+p2)x̃1 q̄(x̃1)γµq(x̃1)]
qA(x+ z)q̄A(y)

Fig. 2a,b. The diagrams of 2-photon annihilation processes
for inclusive quark production (4.1) are shown in a, the corre-
sponding diagrams for M (4.11) in b. Time runs from right to
left

×
∫

d4x2[θ(−x0
2)e

−i(p1+p2)x2 q̄(x2)γνq(x2)

−θ(x0
2)e

−i(p1+p2)x̃2 q̄(x̃2)γνq(x̃2)]|0〉〉, (4.14)

so that our matrix element Ma(x) can be written in the
following way

Ma(x) = Z−1
q e4Q2

ql
µν

∣∣∣∣ 1
s− λ2 + iε

∣∣∣∣
2

θ(−x0)∑
sq

ū(p3)(i
−→
∂� z −M)〈〈0|TqA(x+ z)

∫
d4x2[θ(−x0

2)e
−i(p1+p2)x2 q̄(x2)γνq(x2)

−θ(x0
2)e

−i(p1+p2)x̃2 q̄(x̃2)γνq(x̃2)]∫
d4x1[θ(−x0

1)e
i(p1+p2)x1 q̄(x1)γµq(x1)

−θ(x0
1)e

i(p1+p2)x̃1 q̄(x̃1)γµq(x̃1)]

q̄A(y)|0〉〉(−i←−∂� y −M)u(p3)|y→0−, z→0−(4.15)

in terms of quark 6-point-functions in the quark-gluon-
theory. In the next subsection this will be represented
by a path integral in the modified abelian gluon model.
The electromagnetic interaction of the incoming fermions
could be separated, the calculation is sketched in Ap-
pendix C.

The same procedure can be applied to the scattering
matrix element Mb(x) corresponding to the diagram of
Fig. 1b. Of course this diagram cannot give a contribution
to the inclusive cross section. In higher orders the e+e−-
scattering type diagrams give e.g. the contributions of 2-
photon annihilation processes (cf. Fig. 2) to the inclusive
cross section (4.1)

e+ + e− → e+ + e− + q +X. (4.16)

As a simple check of our theoretical manipulations let
us finally calculate the matrix element Ma(x) in lowest
order in the quark-gluon-coupling g, i.e. for g = 0. Decom-
posing the quark 6-point-functions with Wick’s theorem
into quark 2-point-functions and substituting for these the
perturbative propagators (B.14) we get for Ma two con-
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tributions according to the two different possible contrac-
tions

Ma(x) = 2e4Q2
ql
µν

∣∣∣∣ 1
s− λ2 + iε

∣∣∣∣
2

θ(−x0)

×
∫

dRp
∑
sq

ū(p3) [ei(p−p1−p2)xγν(p� −M)γµ

+ei(p+p1+p2)xγµ(p� −M)γν ] u(p3). (4.17)

Inserting this in (4.8) we get

finc(p3) =
1

2(2π)3w(s,m2,m2)
πe4Q2

ql
µν

∣∣∣∣ 1
s− λ2 + iε

∣∣∣∣
2

×2
∑
sq

ū(p3)γν(p� −M)γµu(p3)

δ(1)(p2 −M2)θ(p0)|p=p1+p2−p3
. (4.18)

This is, of course, the standard result, which one obtains
in considering to lowest order the reaction

e+ + e− → q + q̄ (4.19)

for two quark flavours of charge Qq.

4.3 Path integral representation

In the last subsection the matrix elementM(x) and there-
fore the one-quark-inclusive cross-section could be ex-
pressed in terms of quark 6-point-functions after separat-
ing the electromagnetic interaction by a perturbative cal-
culation. As the coupling g is not assumed to be small we
will now derive a representation of these quark 6-point-
functions suitable for non-perturbative calculations. For
this we consider the Hamiltonian path integral in our ef-
fective theory obtained from the abelian gluon model.

Any Green’s function of the theory can be written as

〈〈0| Tq(x1)...q̄(x2)...Gλ(x3)...Π
ρ
G(x4)... |0〉〉

= Z̃−1
∫
D(G,ΠG, q, q̄) q(x1)...q̄(x2)...Gλ(x3)

...Πρ
G(x4)... exp{i

∫
d4y (Π(y)Φ̇(y)− H̃(y))} (4.20)

with

Z̃ =
∫
D(G,ΠG, q, q̄) exp{i

∫
d4y (Π(y)Φ̇(y)− H̃(y))}

(4.21)

and

Π(y)Φ̇(y) = Πρ
G(y)Ġρ(y) +Πq(y)q̇(y) + ˙̄q(y)Πq̄(y)

= Πρ
G(y)Ġρ(y) +

i

2
q̄(y)γ0

↔
∂0 q(y). (4.22)

Here the classical fields G and ΠG and the Grassmann
fields q and q̄ have to be inserted into the part of H̃(y) (4.7)

which describes the abelian gluon model. Furthermore for
y0 > 0 the classical and Grassmann fields have to be time-
shifted according to (B.6) and (B.13) so that we get

Π(y)Φ̇(y)− H̃(y)
=

1
2
η0ΠG0(y)Π0

G(y) + ∂µG
µ(y)Π0

G(y) +
1
2
ΠGi(y)Πi

G(y)

−Gi0(y)Πi
G(y)−

1
4
Gij(y)Gij(y) +

1
2
λ2

0Gµ(y)Gµ(y)

+q̄(y)
(
i

2

↔
∂� y −M0

)
q(y)− θ(−y0)g0q̄(y)τ3G� (y)q(y)

+θ(y0) g0q̄(ỹ)τ3G� (ỹ) q(ỹ). (4.23)

For the modified abelian gluon model the canonical
momenta Πµ

G can be integrated out explicitely to obtain
a Lagrangian path integral∫

D(G,ΠG, q, q̄) exp{i
∫

d4y (Π(y)Φ̇(y)− H̃(y))}

=
∫
D(G, q, q̄) exp{i

∫
d4y L̃(y)} (4.24)

with an effective Lagrangian L̃(y)

L̃(y) = −1
4
Gµν(y)Gµν(y)− 1

2η0
(∂µGµ(y))2

+
1
2
µ2

0Gµ(y)Gµ(y) + q̄(y)(
i

2

↔
∂� y −M0)q(y)

−θ(−y0)g0q̄(y)τ3G� (y)q(y)
+θ(y0)g0q̄(ỹ)τ3G� (ỹ)q(ỹ)
−θ(y0)

1
2
g2
0

∫
d4z1 δ(1)(y0 − z0

1)

×
∫

d4z2 δ(1)(y0 − z0
2)q̄(z̃1)τ3{ 1

η0
(−∆(z̃1 − y;λ2

0)γ0

+
1
λ2

0
∂� ∂0[∆(z̃1 − y; η0λ

2
0)−∆(z̃1 − y;λ2

0)])q(z̃1)

q̄(z̃2)(−∆(z̃1 − y;λ2
0)γ

0

+
1
λ2

0
∂� ∂0[∆(z̃1 − y; η0λ

2
0)−∆(z̃1 − y;λ2

0)])

+(−∆(z̃1 − y;λ2
0)γi

+
1
λ2

0
∂� ∂i[∆(z̃1 − y; η0λ

2
0)−∆(z̃1 − y;λ2

0)])q(z̃1)

q̄(z̃2)(−∆(z̃1 − y;λ2
0)γ

i

+
1
λ2

0
∂� ∂i[∆(z̃1 − y; η0λ

2
0)−∆(z̃1 − y;λ2

0)])
}
τ3q(z̃2).

(4.25)

The straightforward calculation leads to a four fermion
coupling term, which results from the time-shift relations
of the bosonic fields.

As the Hamiltonian path integral (4.21) is quadratic in
q, q̄, the fermionic fields can be integrated out. With the
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Green’s function S̃F of the quark in the modified gluon
background

(i∂� −M0)S̃F (z1, z2;G)− g

∫
d4z G� (z1; z)S̃F (z, z2;G)

= −δ(4)(z1 − z2), (4.26)

the quark propagator is given as

〈〈 0 | Tq(z1)q̄(z2) | 0〉〉 = 〈〈 1
i
S̃F (z1, z2;G)〉〉, (4.27)

where the brackets 〈〈 〉〉 on the right hand side denote the
average over all gluon fields with the measure dictated by
the path-integral

〈〈F (G,ΠG)〉〉 = Z̃−1
∫
D(G,ΠG)F (G,ΠG)

× exp[i
∫

d4y (
1
2
η0ΠG0Π

0
G + ∂µG

µΠ0
G

+
1
2
ΠGiΠ

i
G −Gi0Π

i
G −

1
4
GijG

ij

+
1
2
λ2

0GµG
µ)] (4.28)(

det
[
−i
(
i∂� −M0 − g0

∫
d4zG� ( .; z)

)])2

with

G� (y1; y2) = θ(−y0
1)δ

(4)(y1 − y2) τ3G� (y1)

+θ(y0
1)δ

(1)(y0
1 − y0

2)
∫

d4z δ(z0 − y0
1)

γ0S(y1 − z̃;M)τ3G� (z̃)S(z̃−y2;M)γ0.(4.29)

Inserting the Green’s function (4.27) into the matrix ele-
ment (4.15) we get the matrix elements and therefore the
inclusive cross section expressed explicitely in terms of
a Hamiltonian or Lagrangian path integral, respectively.
These expressions should be a convenient starting point
for applying non-perturbative methods to an evaluation
of inclusive cross sections. It should be possible, for in-
stance, to generalise the methods of [11] to the case of
this effective theory here.

5 Comparison to other techniques
and conclusions

In this section we give a brief comparison of our technique
using time-shifted fields with the formalisms of Schwinger
and Keldysh [1,2] and Mueller [3]. Then we will draw our
conclusions.

To discuss the Schwinger-Keldysh formalism we go
back to (3.15) where the time sequence runs forward from
−T to 0 and then back to −T ′. Following Schwinger and
Keldysh one inserts U -matrices from 0 to a large positive
time T ′′ and back to 0

U(0, T ′′)U(T ′′, 0) = 11, (5.1)

Fig. 3. Time contour in the Keldysh formalism

Fig. 4a,b. In a the discontinuity of Tfi is shown which is
related to the inclusive cross section a+b → c+X in Mueller’s
formalism b

M(x) = lim
ti,t′i→∞

lim
T,T ′,T ′′→∞

Z−1
c ( 0 | U(−T ′,−t′2)

×B(0)(−t′2)U(−t′2,−t′1)A(0)(−t′1)U(−t′1, 0)
×U(0, T ′′)U(T ′′, 0)j†(0)

c (0)U(0, x0)j(0)
c (x)

×U(x0,−t1)A†(0)(−t1)U(−t1,−t2)B†(0)(−t2)
×U(−t2,−T ) | 0 )θ(−x0)
×[( 0 | U(T ′,−T ) | 0 )]−1. (5.2)

In the complex time plane we go along a path starting
at −T , going to T ′′ and then back to −T ′ (Fig. 3). This
method is best used introducing the two field formalism
[1,2]. It plays an important role in thermal field theory in
the real time formulation [13,14].

In Mueller’s formalism one starts with the 3-3 ampli-
tude for a+ b+ c̄→ a+ b+ c̄

〈 a(p′
1), b(p

′
2), c̄(p

′
3), out | a(p1), b(p2), c̄(p3), in 〉

= δfi + i(2π)4δ(4)(p1 + p2 + p3 − p′
1 − p′

2 − p′
3)Tfi. (5.3)

Then one identifies a particular contribution to ImTfi, i.e.
a particular discontinuity of Tfi (Fig. 4).

We should emphasise that our approach is quite dis-
tinct from these. In our effective theory the time contour
runs from −∞ to +∞. The scattering matrix S̃ = 11 (cf.
3.32). If we insert the matrix elementM calculated in the
effective theory according to (3.31) into (2.10) we get an
expression which looks almost like a 3→3 scattering am-
plitude but not quite so because of the function θ(−x0) in
(3.31).

To conclude: We have presented in this article a novel
technique for treating inclusive reactions: the method of
the time-shifted fields. We have explained this method for
theories with scalar fields and with electrons and quarks
interacting with photons and abelian gluons. The generali-
sation to QCD should be straightforward and will be dealt
with in future work. We have written the inclusive cross
section as imaginary part of an amplitude C for which we
have given a path integral representation. We have ap-
plied our formalism to the reaction e+ + e− → q+X and
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checked that in lowest nontrivial order we get the correct
result. Our hope is that our path integral representation
will lead to a genuinely non-perturbative evaluation of in-
clusive cross sections at high energies along the lines of
[11]. The method of the time shifted fields could also be
useful for general studies of inclusive reactions in QFT.
One can, for instance, think of generalising Wilson’s oper-
ator product expansion (OPE) [15] to our effective theory.
Then our methods should allow a straightforward descrip-
tion of inclusive production of hadrons h in e+e− annihi-
lation at high energies

e+ + e− → h+X (5.4)

in terms of a genuine OPE. A similar approach should be
possible for fracture functions [16] for hadron-hadron or
virtual photon (γ∗)-proton scattering

h1 + h2 → h3 +X

γ∗ + p → p+X. (5.5)

The last reaction is, of course, related to diffractive deep
inelastic scattering as observed at HERA [17]. Finally,
our methods can also be applied to the treatment of non-
equilibrium processes in thermal field theory.
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Appendix

A Relations for QED
and the abelian gluon model

A.1 Symmetries

The Lagrangian (4.2) has the following two symmetries of
the charge conjugation type

CA : ψ(x)→ Cψ̄T (x),
q(x)→ εCq̄T (x),

Aµ(x)→ −Aµ(x),
Gµ(x)→ Gµ(x); (A.1)

CG : ψ(x)→ ψ(x), ,
q(x)→ −εq(x),

Aµ(x)→ Aµ(x),
Gµ(x)→ −Gµ(x). (A.2)

Here C is the usual charge conjugation matrix for Dirac
fields (cf. e.g. [12]) and

ε =

(
0 1
−1 0

)
. (A.3)

The standard charge conjugation transformation is

C = CACG. (A.4)

The symmetries CA and CG forbid coupling terms of the
types AG, A3, AG2, A2G, G3, AG3, A3G in our La-
grangian (4.2) and require the quark mass term to be
flavour diagonal. Coupling terms of type A4, A2G2, G4

have mass dimension 4 and could be included in L. But
we can leave them out since the renormalisation proce-
dure does not require them. The reason is as in QED:
The vector bosons couple to conserved currents and thus
the superficial degree of divergence of vertex functions of
four vector bosons is less than 0 (cf. e.g. [6]).

A.2 Renormalisation

We outline here the main steps in the renormalisation pro-
gram of our theory.

Let us define the unrenormalised vacuum polarisation
tensors Π

(A)
µν (k) of the photon and Π

(G)
µν (k) of the gluon

= ie2
0Π

(A)
µν (k) , (A.5)

= ig2
0Π

(G)
µν (k) , (A.6)

Here the blobs mean the sum of the one-particle irre-
ducible diagrams. In the standard way one shows that
Π

(A)
µν and Π

(G)
µν are purely transverse and independent of

the “gauge parameters” η0 and ξ0. Thus we write

Π(A,G)
µν (k) = (−gµνk2 + kµkν)Π(A,G)(k2). (A.7)

The unrenormalised photon propagator ∆
′(A)
Fµν reads

i∆
′(A)
F (k)µν =

−i
k2[1 + e2

0Π
(A)(k2)]− λ2

0 + iε

×[gµν + (ξ0[1 + e2
0Π

(A)(k2)]− 1)

× kµkν
k2 − ξ0λ2

0 + iε
]. (A.8)

The renormalised photon mass λ is obtained from

λ2[1 + e2
0Π

(A)(λ2)]− λ2
0 = 0. (A.9)

The wave function renormalisation constant Z
(A)
3 of the

photon is given by

Z
(A)
3 = [1 + e2

0Π
(A)(λ2)]−1. (A.10)

It follows that the renormalised mass λ, the renormalised
charge e and the renormalised gauge parameter ξ are given
by

λ2 = Z
(A)
3 λ2

0, (A.11)

e2 = Z
(A)
3 e2

0, (A.12)

ξ = (Z(A)
3 )−1ξ0. (A.13)



674 O. Nachtmann, A. Rauscher: A path integral approach to inclusive processes

With that we get for the renormalised field AµR and prop-
agator ∆(A)

F,Rµν

AµR(x) = (Z(A)
3 )−

1
2Aµ(x), (A.14)

i∆
(A)
F,R(k)µν =

−i
k2[1 + e2Π

(A)
c (k2)]− λ2 + iε

×[gµν + (ξ[1 + e2Π(A)
c (k2)]− 1)

× kµkν
k2 − ξλ2 + iε

] (A.15)

Π(A)
c (k2) = Π(A)(k2)−Π(A)(λ2). (A.16)

Note that with the conventional choice of ZA
3 in (A.10) the

residue of the pole at k2 = λ2 in the transverse term of
the renormalised propagator is finite but not normalised
to 1.

For the gluon relations completely analogous to (A.8)–
(A.16) hold with the replacements A→ G, e0 → g0, λ0 →
µ0 and ξ0 → η0.

The renormalisation of the electron and quark fields is
standard. Let −iΣ(ψ)(p) be the unrenormalised electron
self energy, then the unrenormalised electron propagator
S

′(ψ)
F is

S
′(ψ)
F (p)−1 = p� −m0 −Σ(ψ)(p) + iε. (A.17)

The renormalised electron mass m and the wave function
renormalisation constant Z(ψ)

2 are given by

0 = m−m0 −Σ(m), (A.18)

Z
(ψ)
2 = [1− ∂

∂p� Σ
(ψ)(p� )|p	 =m

]−1. (A.19)

For the renormalised electron field ψR and propagator
S

(ψ)
F,R we have

ψR(x) = (Z(ψ)
2 )−

1
2ψ(x), (A.20)

S
(ψ)
F,R(p)

−1 = p� −m−Σ
(ψ)
R (p) + iε, (A.21)

Σ
(ψ)
R (p) = Z

(ψ)
2 [Σ(ψ)(p)−Σ(ψ)(m)]

−(Z(ψ)
2 − 1)(p� −m). (A.22)

Relations analogous to (A.17)–(A.22) hold for quarks
in our theory with the replacements ψ → q, m0 → M0.
Note that also the complete quark propagator is flavour
diagonal due to the CA and CG symmetries (A.1),(A.2).

This concludes our brief discussion of the renormalisa-
tion of the model.

B Free fields and time-shift relations

B.1 Massive vector field

A free vector field Gµ of mass µ can be described by a
Lagrangian density

L = −1
4
GµνG

µν − 1
2η

(∂µGµ)2 +
1
2
µ2GµG

µ (B.1)

with the field strength tensor Gµν = ∂µGν − ∂νGµ. With
the canonical momenta Πε

Πε =
∂L

∂(∂0Gε)
= Gε0 − gε0

1
η
(∂µGµ), (B.2)

the Hamiltonian density is given as

H = −1
2
ηΠ0Π

0 − 1
2
ΠiΠ

i − ∂iG
iΠ0 +Πi∂iG

0

+
1
4
GijG

ij − 1
2
µ2GµG

µ. (B.3)

Using the commutator function ∆

∆(x;µ2) = i

∫
dRk(e−ikx − eikx) (B.4)

with

dRk =
d4k

(2π)3
θ(k0)δ(1)(k2 − µ2), (B.5)

Gµ at the space-time x can be obtained from Gµ at time
y0 by means of

Gµ(x) =
∫
y0=const.

d3y [∆̇(x− y;µ2)Gµ(y)

−∆(x− y;µ2)Πµ(y) + ∂µ∆(x− y; ηµ2)G0(y)

+
1
µ2 ∂µ∂ρ[∆(x− y; ηµ2)−∆(x− y;µ2)]Πρ(y)

−g0µ∂ρ∆(x− y;µ2)Gρ(y)], (B.6)

where the time-derivative of Gµ has been expressed in
terms of Gµ and Πµ with the help of the free equations
of motion. The derivatives are taken with respect to the
first argument. In the case of η = 1 (B.6) reduces to

Gµ(x) =
∫
y0=const.

d3y ∆(x− y;µ2)∂y0
↔

Gµ(y). (B.7)

Furthermore we need for the perturbative calculation the
propagator

〈0| TGµ(x)Gρ(y) |0〉 =
∫

d4k

(2π)4
−igµρ

k2 − µ2 + iε
e−ik(x−y).

(B.8)

B.2 Dirac field

Starting from the Lagrangian density for a free Dirac field
ψ of mass m

L = ψ̄

(
i

2

↔
∂� −m

)
ψ, (B.9)

the corresponding Hamiltonian density is given as

H = −ψ̄
(
i

2
γi

↔
∂i −m

)
ψ. (B.10)
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The mapping of ψ from y to another space-time point x
is accomplished by

ψ(x) = −i
∫
y0=const.

d3yS(x− y;m)γ0ψ(y) (B.11)

ψ̄(x) = −i
∫
y0=const.

d3y ψ̄(y)γ0S(y − x;m) (B.12)

with

S(x;m) = (i∂� x +m)∆(x;m2). (B.13)

Furthermore we need the perturbative propagator

〈0| Tψ(x)ψ̄(y) |0〉
=
∫

dRp [θ(x0 − y0)e−ip(x−y)(p� +m)

+θ(y0 − x0)e+ip(x−y)(−p� +m)]. (B.14)

C Calculation of M
The calculation ofM is demonstrated best in calculating
the part

I = 〈〈0| T
∫

d4x3[θ(−x0
3)Aµ(x3)ei(p1+p2)x3

−θ(x0
3)Aµ(x̃3)ei(p1+p2)x̃3 ]

×
∫

d4x1[θ(−x0
1)q̄(x1)A� (x1)q(x1)

−θ(x0
1)q̄(x̃1)A� (x̃1)q(x̃1)] ... |0〉〉 (C.1)

of the matrix element in (4.14). This expression is in prin-
ciple governed by the four integrals I1, I2, I3 and I4, which
will be calculated successively in the following. We will
start with I1

I1 = 〈〈0| T
∫

d4x3θ(−x0
3)Aµ(x3)ei(p1+p2)x3

×θ(−x0
1)Aρ(x1) |0〉〉

= θ(−x0
1)
∫

d4x3θ(−x0
3)e

i(p1+p2)x3

×〈〈0| TAµ(x3)Aρ(x1) |0〉〉
= −igµρθ(−x0

1)
∫

d4x3θ(−x0
3)e

i(p1+p2)x3

×
∫

d4k

(2π)4
1

k2 − λ2 + iε
e−ik(x3−x1)

= −igµρθ(−x0
1)
∫

d3k δ(3)(p1 + p2 − k)

×
∫

dx0
3θ(−x0

3)e
i(p01+p

0
2)x

0
3

×
∫

dk0

(2π)
1

k2 − λ2 + iε
e−ik0(x0

3−x0
1). (C.2)

The integration of k0 is best done using the residue theo-
rem. Unfortunately, because of the occurring θ-functions

in x0
3 and x0

1 the integral is neither in the upper nor in the
lower complex plane convergent. This can be circumvented
via∫

d4x3θ(−x0
3)f(x3) =

∫
d4x3f(x3)−

∫
d4x3θ(x0

3)f(x3)

(C.3)

so that we get two contributions, one in which the x0
3-

integration stretches over the whole real axis, we get a
δ-function in k0 and its integration becomes trivial and a
second contribution where we can apply the residue theo-
rem without any problems

I1 = −igµρθ(−x0
1)[

1
s− λ2 + iε

ei(p1+p2)x1

−
∫

dRk(2π)3δ(3)(p1 + p2 − k)eikx1

× 1
p0
1 + p0

2 − k0 + iε
]. (C.4)

With the help of∫
d4Bδ(1)(B0 − x0

3)∆(x̃3 −B)∂B0
↔

e−ikB

= e−ikx3
1

2k0′

(
e2ik0′

x0
3(k0 + k0′

) + (−k0 + k0′
)e−2ik0′

x0
3

)
with k0′

=
√

k2 + λ2 (C.5)

the integration of I2 is straightforward. We can apply the
residue theorem directly because the θ-functions ensure
the convergence of the integral over k0

I2 = 〈〈0| T
∫

d4x3θ(x0
3)Aµ(x̃3)ei(p1+p2)x̃3

×θ(−x0
1)Aρ(x1) |0〉〉

= θ(−x0
1)
∫

d4x3θ(x0
3)e

i(p1+p2)x̃3

×〈〈0| TAµ(x̃3)Aρ(x1) |0〉〉
= θ(−x0

1)
∫

d4x3θ(x0
3)e

i(p1+p2)x̃3

∫
d4Bδ(1)(B0 − x0

3)

×∆(x̃3 −B)∂B0
↔ 〈〈0| TAµ(B)Aρ(x1) |0〉〉

= igµρθ(−x0
1)
∫

dRk(2π)3δ(3)(p1 + p2 − k)eikx1

× 1
p0
1 + p0

2 − k0 − iε
. (C.6)

To calculate I we need only the difference between both
integrals

I1 − I2 = −igµρθ(−x0
1)e

i(p1+p2)x1 [
1

s− λ2 + iε

+i

∫
dRk(2π)4δ(4)(p1 + p2 − k)]

= −igµρθ(−x0
1)

1
s− λ2 − iε

ei(p1+p2)x1 . (C.7)
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I3 can be treated in the same way as I2

I3 = 〈〈0| T
∫

d4x3θ(−x0
3)Aµ(x3)ei(p1+p2)x3

×θ(x0
1)Aρ(x̃1) |0〉〉

= igµρθ(x0
1)
∫

dRk(2π)3δ(3)(p1 + p2 − k)eikx1

× 1
p0
1 + p0

2 + k0′ − iε
. (C.8)

The most complicated integral is I4

I4 = 〈〈0| T
∫

d4x3θ(x0
3)Aµ(x̃3)ei(p1+p2)x̃3θ(x0

1)Aρ(x̃1) |0〉〉

= θ(x0
1)
∫

d4x3θ(x0
3)e

i(p1+p2)x̃3〈〈0| TAµ(x̃3)Aρ(x̃1) |0〉〉

= θ(x0
1)
∫

d4x3θ(x0
3)e

i(p1+p2)x̃3

∫
d4Bδ(1)(B0 − x0

3)

×∆(x̃3 −B)
∫

d4Cδ(1)(C0 − x0
1)∆(x̃1 − C)

×〈〈0| T∂B0
↔

Aµ(B)∂C0
↔

Aρ(C) |0〉〉. (C.9)

From this integral we get two contributions because of an
additional contact term which arises due to the two time
derivatives in the 2-point function

〈〈0| T∂B0Aµ(B)∂C0Aρ(C) |0〉〉
= ∂B0∂C0〈〈0| TAµ(B)Aρ(C) |0〉〉
+igµρδ

(4)(B − C). (C.10)

The contact term gives rise to the contribution

I41 = −igµρθ(x0
1)e

i(p1+p2)x̃1

∫
dRk

1
2k0 (2π)

3

δ(3)(p1 + p2 − k)(e4ik0x0
1 + e−4ik0x0

1 − 2) (C.11)

and the rest, again with the use of (C.3) and (C.5), results
into

I42 = igµρθ(x0
1)[
∫

dRk(2π)3δ(3)(p1 + p2 − k)eikx1

× 1
p0
1 + p0

2 + k0′ + iε
− ei(p1+p2)x̃1(

∫
dRk

1
2k0 (2π)

3

×δ(3)(p1 + p2 − k)(2− e4ik0x0
1 − e−4ik0x0

1)

− 1
s− λ2 − iε

)], (C.12)

so that we get

I4 = igµρθ(x0
1)[
∫

dRk(2π)3δ(3)(p1 + p2 − k)eikx1

× 1
p0
1 + p0

2 + k0′ + iε
+ ei(p1+p2)x̃1

1
s− λ2 − iε

]. (C.13)

Again we only need the difference between both integrals

I3 − I4 = igµρθ(x0
1)e

i(p1+p2)x̃1 [− 1
s− λ2 − iε

+i

∫
dRk(2π)4δ(4)(p1 + p2 + k)]

= −igµρθ(x0
1)

1
s− λ2 − iε

ei(p1+p2)x̃1 , (C.14)

so that we finally get

I = −i 1
s− λ2 − iε

〈〈0|T
∫

d4x1[θ(−x0
1)q̄(x1)γµq(x1)

×ei(p1+p2)x1 − θ(x0
1)q̄(x̃1)γµq(x̃1)ei(p1+p2)x̃1 ]...|0〉〉.

(C.15)
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